diff --git a/python/examples/multichannel.py b/python/examples/multichannel.py index 8d0d7d2..2a39de1 100644 --- a/python/examples/multichannel.py +++ b/python/examples/multichannel.py @@ -1,24 +1,43 @@ import IMCtermite import pandas +import datetime + +def add_trigger_time(trigger_time, add_time) : + trgts = datetime.datetime.strptime(trigger_time,'%Y-%m-%dT%H:%M:%S') + dt = datetime.timedelta(seconds=add_time) + return (trgts + dt).strftime('%Y-%m-%dT%H:%M:%S:%f') if __name__ == "__main__" : + # read file and extract data imctm = IMCtermite.imctermite(b"Measurement.raw") - chns = imctm.get_channels(True) - - df = pandas.DataFrame() - xcol = "time ["+chns[0]['xunit']+"]" - df[xcol] = pandas.Series(chns[0]['xdata']) + # prepare abscissa + xcol = "time ["+chns[0]['xunit']+"]" + #xcol = "timestamp" + xsts = [add_trigger_time(chns[0]['trigger-time'],tm) for tm in chns[0]['xdata']] - for idx,chn in enumerate(chns) : + # sort channels + chnnms = sorted([chn['name'] for chn in chns], reverse=False) + chnsdict = {} + for chn in chns : + chnsdict[chn['name']] = chn + + # construct dataframe + df = pandas.DataFrame() + df[xcol] = pandas.Series(chns[0]['xdata']) + #df[xcol] = pandas.Series(xsts) + #for idx,chn in enumerate(chns) : + for chnnm in chnnms : + chn = chnsdict[chnnm] #xcol = (chn['xname'] if chn['xname'] != '' else "x_"+str(idx))+" ["+chn['xunit']+"]" #df[xcol] = pandas.Series(chn['xdata']) ycol = chn['yname']+" ["+chn['yunit']+"]" df[ycol] = pandas.Series(chn['ydata']) + # show entire dataframe and write file print(df) df.to_csv("Measurement.csv",header=True,sep='\t',index=False)