IMCtermite/lib/imc_raw.hpp

366 lines
11 KiB
C++

//---------------------------------------------------------------------------//
#ifndef IMCRAW
#define IMCRAW
#include <fstream>
#include <filesystem>
#include <iostream>
#include "hexshow.hpp"
#include "imc_key.hpp"
#include "imc_block.hpp"
#include "imc_datatype.hpp"
#include "imc_object.hpp"
#include "imc_result.hpp"
#include "imc_channel.hpp"
//---------------------------------------------------------------------------//
namespace imc
{
class raw
{
// (path of) raw-file and its basename
std::string raw_file_, file_name_;
// buffer of raw-file
std::vector<unsigned char> buffer_;
// list and map of imc-blocks
std::vector<imc::block> rawblocks_;
std::map<std::string,imc::block> mapblocks_;
// check computational complexity for parsing blocks
unsigned long int cplxcnt_;
// list groups and channels (including their affiliate blocks)
std::map<std::string,imc::channel> channels_;
public:
// constructor
raw() {};
raw(std::string raw_file): raw_file_(raw_file) { set_file(raw_file); };
// provide new raw-file
void set_file(std::string raw_file)
{
raw_file_ = raw_file;
this->fill_buffer();
this->parse_blocks();
this->generate_block_map();
this->generate_channel_env();
}
private:
// open file and stream data into buffer
void fill_buffer()
{
// open file and put data in buffer
try {
std::ifstream fin(raw_file_.c_str(),std::ifstream::binary);
if ( !fin.good() ) throw std::runtime_error("failed to open file");
std::vector<unsigned char> buffer((std::istreambuf_iterator<char>(fin)),
(std::istreambuf_iterator<char>()));
buffer_ = buffer;
fin.close();
} catch ( const std::exception& e ) {
throw std::runtime_error(
std::string("failed to open raw-file and stream data in buffer: ") + e.what()
);
}
}
// parse all raw blocks in buffer
void parse_blocks()
{
// reset counter to identify computational complexity
cplxcnt_ = 0;
// start parsing raw-blocks in buffer
for ( std::vector<unsigned char>::iterator it=buffer_.begin();
it!=buffer_.end(); ++it )
{
cplxcnt_++;
// check for "magic byte"
if ( *it == ch_bgn_ )
{
// check for (non)critical key
if ( *(it+1) == imc::key_crit_ || *(it+1) == imc::key_non_crit_ )
{
// compose (entire) key
std::string newkey = { (char)*(it+1), (char)*(it+2) };
imc::key itkey(*(it+1) == imc::key_crit_,newkey);
// expecting ch_sep_ after key
if ( *(it+3) == ch_sep_ )
{
// extract key version
std::string vers("");
unsigned long int pos = 4;
while ( *(it+pos) != ch_sep_ )
{
vers.push_back((char)*(it+pos));
pos++;
}
int version = std::stoi(vers);
// try to retrieve full key
itkey.version_ = version;
itkey = imc::get_key(itkey.critical_,itkey.name_,itkey.version_);
// check for known keys (including version)
if ( imc::check_key(itkey) )
{
// get block length
std::string leng("");
pos++;
while ( *(it+pos) != ch_sep_ )
{
leng.push_back((char)*(it+pos));
pos++;
}
unsigned long length = std::stoul(leng);
// declare and initialize corresponding key and block
// imc::key bkey( *(it+1)==imc::key_crit_ , newkey,
// imc::keys.at(newkey).description_, version );
imc::block blk(itkey,it-buffer_.begin(),
it-buffer_.begin()+pos+1+length,
raw_file_, &buffer_);
// add block to list
rawblocks_.push_back(blk);
// skip the remaining block according to its length
if ( it-buffer_.begin()+length < buffer_.size() )
{
std::advance(it,length);
}
}
else
{
// all critical must be known !! while a noncritical may be ignored
if ( *(it+1) == imc::key_crit_ )
{
throw std::runtime_error(
std::string("unknown critical key: ") + newkey + std::to_string(version)
);
}
else
{
std::cout<<"WARNING: unknown noncritical key '"
<<newkey<<version<<"' will be ignored\n";
}
}
}
else
{
throw std::runtime_error(
std::string("invalid block or corrupt buffer at byte: ")
+ std::to_string(it+3-buffer_.begin())
);
}
}
}
}
this->check_consistency();
}
// check consistency of blocks
void check_consistency()
{
for ( unsigned long int b = 0; b < this->rawblocks_.size()-1; b++ )
{
if ( this->rawblocks_[b].get_end() >= this->rawblocks_[b+1].get_begin() )
{
throw std::runtime_error(
std::string("inconsistent subsequent blocks:\n")
+ std::to_string(b) + std::string("-th block:\n") + this->rawblocks_[b].get_info()
+ std::string("\n")
+ std::to_string(b+1) + std::string("-th block:\n") + this->rawblocks_[b+1].get_info() );
}
}
}
// generate map of blocks using their uuid
void generate_block_map()
{
for ( imc::block blk: rawblocks_ )
{
mapblocks_.insert( std::pair<std::string,imc::block>(blk.get_uuid(),blk) );
}
}
// generate channel "environments"
void generate_channel_env()
{
// declare single channel environment
imc::channel_env chnenv;
chnenv.reset();
// collect affiliate blocks for every channel WITH CHANNEL and AFFILIATE
// BLOCK CORRESPONDENCE GOVERNED BY BLOCK ORDER IN BUFFER!!
for ( imc::block blk: rawblocks_ )
{
if ( blk.get_key().name_ == "CN" ) chnenv.CNuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CD" ) chnenv.CDuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CT" ) chnenv.CTuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "Cb" ) chnenv.Cbuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CP" ) chnenv.CPuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CR" ) chnenv.CRuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CS" ) chnenv.CSuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "NT" ) chnenv.NTuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "NO" ) chnenv.NOuuid_ = blk.get_uuid();
// check for currently associated channel
if ( !chnenv.CNuuid_.empty() )
{
// any component/channel is closed by any of {CS, CC, CG, CB}
if ( blk.get_key().name_ == "CS" || blk.get_key().name_ == "CC"
|| blk.get_key().name_ == "CG" || blk.get_key().name_ == "CB" )
{
// provide UUID for channel
chnenv.uuid_ = chnenv.CNuuid_;
// create channel object and add it to the map of channels
channels_.insert( std::pair<std::string,imc::channel>
(chnenv.CNuuid_,imc::channel(chnenv,&mapblocks_,&buffer_))
);
// reset channel uuid
chnenv.CNuuid_.clear();
}
}
// in contrast to component closed by CS block the blocks CB, CG, CC
// already belong to NEXT component
if ( blk.get_key().name_ == "CB" ) chnenv.CBuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CG" ) chnenv.CGuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CC" ) chnenv.CCuuid_ = blk.get_uuid();
}
}
public:
// provide buffer size
unsigned long int buffer_size()
{
return buffer_.size();
}
// get blocks
std::vector<imc::block>& blocks()
{
return rawblocks_;
}
// get computational complexity
unsigned long int& computational_complexity()
{
return cplxcnt_;
}
// get list of channels with metadata
std::vector<std::string> get_channels(bool json = false, bool include_data = false)
{
std::vector<std::string> chns;
for ( std::map<std::string,imc::channel>::iterator it = channels_.begin();
it != channels_.end(); ++it)
{
if ( !json )
{
chns.push_back(it->second.get_info());
}
else
{
chns.push_back(it->second.get_json(include_data));
}
}
return chns;
}
// get particular channel including data by its uuid
imc::channel get_channel(std::string uuid)
{
if ( channels_.count(uuid) )
{
return channels_.at(uuid);
}
else
{
throw std::runtime_error(std::string("channel does not exist:") + uuid);
}
}
// list a particular type of block
std::vector<imc::block> list_blocks(imc::key mykey)
{
std::vector<imc::block> myblocks;
for ( imc::block blk: this->rawblocks_ )
{
if ( blk.get_key() == mykey ) myblocks.push_back(blk);
}
return myblocks;
}
// list all groups (associated to blocks "CB")
std::vector<imc::block> list_groups()
{
return this->list_blocks(imc::get_key(true,"CB"));
}
// list all channels
std::vector<std::string> list_channels()
{
std::vector<std::string> channels;
for ( imc::block blk: this->rawblocks_ )
{
if ( blk.get_key() == imc::get_key(true,"CN") )
{
imc::parameter prm = blk.get_parameters()[6];
channels.push_back(blk.get_parameter(prm));
}
}
return channels;
}
// print all channels in directory
void print_channels(std::string output)
{
// check for given directory
std::filesystem::path pd = output;
if ( !std::filesystem::is_directory(pd) )
{
throw std::runtime_error("given directory does not exist");
}
for ( std::map<std::string,imc::channel>::iterator it = channels_.begin();
it != channels_.end(); ++it)
{
// construct filename
std::string chid = std::string("channel_") + it->first;
std::string filenam = it->second.name_.empty() ? chid + std::string(".csv")
: it->second.name_ + std::string(".csv");
std::filesystem::path pf = pd / filenam;
// and print the channel
it->second.print(pf);
}
}
};
}
#endif
//---------------------------------------------------------------------------//