IMCtermite/lib/imc_raw.hpp
2021-02-11 13:38:07 +01:00

336 lines
10 KiB
C++

//---------------------------------------------------------------------------//
#ifndef IMCRAW
#define IMCRAW
#include <fstream>
// #include <filesystem>
#include "hexshow.hpp"
#include "imc_key.hpp"
#include "imc_block.hpp"
#include "imc_datatype.hpp"
#include "imc_object.hpp"
#include "imc_result.hpp"
#include "imc_channel.hpp"
//---------------------------------------------------------------------------//
namespace imc
{
class raw
{
// (path of) raw-file and its basename
std::string raw_file_, file_name_;
// buffer of raw-file
std::vector<unsigned char> buffer_;
// list and map of imc-blocks
std::vector<imc::block> rawblocks_;
std::map<std::string,imc::block> mapblocks_;
// check computational complexity for parsing blocks
unsigned long int cplxcnt_;
// list groups and channels with their affiliate blocks
std::map<std::string,imc::channel_env> channel_envs_;
public:
// constructor
raw() {};
raw(std::string raw_file): raw_file_(raw_file) { set_file(raw_file); };
// provide new raw-file
void set_file(std::string raw_file)
{
raw_file_ = raw_file;
this->fill_buffer();
this->parse_blocks();
this->generate_block_map();
this->generate_channel_env();
}
private:
// open file and stream data into buffer
void fill_buffer()
{
// open file and put data in buffer
try {
std::ifstream fin(raw_file_.c_str(),std::ifstream::binary);
if ( !fin.good() ) throw std::runtime_error("failed to open file");
std::vector<unsigned char> buffer((std::istreambuf_iterator<char>(fin)),
(std::istreambuf_iterator<char>()));
buffer_ = buffer;
fin.close();
} catch ( const std::exception& e ) {
throw std::runtime_error(
std::string("failed to open raw-file and stream data in buffer: ") + e.what()
);
}
}
// parse all raw blocks in buffer
void parse_blocks()
{
// reset counter to identify computational complexity
cplxcnt_ = 0;
// start parsing raw-blocks in buffer
for ( std::vector<unsigned char>::iterator it=buffer_.begin();
it!=buffer_.end(); ++it )
{
cplxcnt_++;
// check for "magic byte"
if ( *it == ch_bgn_ )
{
// check for (non)critical key
if ( *(it+1) == imc::key_crit_ || *(it+1) == imc::key_non_crit_ )
{
// compose (entire) key
std::string newkey = { (char)*(it+1), (char)*(it+2) };
imc::key itkey(*(it+1) == imc::key_crit_,newkey);
// expecting ch_sep_ after key
if ( *(it+3) == ch_sep_ )
{
// extract key version
std::string vers("");
unsigned long int pos = 4;
while ( *(it+pos) != ch_sep_ )
{
vers.push_back((char)*(it+pos));
pos++;
}
int version = std::stoi(vers);
// try to retrieve full key
itkey.version_ = version;
itkey = imc::get_key(itkey.critical_,itkey.name_,itkey.version_);
// check for known keys (including version)
if ( imc::check_key(itkey) )
{
// get block length
std::string leng("");
pos++;
while ( *(it+pos) != ch_sep_ )
{
leng.push_back((char)*(it+pos));
pos++;
}
unsigned long length = std::stoul(leng);
// declare and initialize corresponding key and block
// imc::key bkey( *(it+1)==imc::key_crit_ , newkey,
// imc::keys.at(newkey).description_, version );
imc::block blk(itkey,it-buffer_.begin(),
it-buffer_.begin()+pos+1+length,
raw_file_, &buffer_);
// add block to list
rawblocks_.push_back(blk);
// skip the remaining block according to its length
if ( it-buffer_.begin()+length < buffer_.size() )
{
std::advance(it,length);
}
}
else
{
// all critical must be known !! while a noncritical may be ignored
if ( *(it+1) == imc::key_crit_ )
{
throw std::runtime_error(
std::string("unknown critical key: ") + newkey + std::to_string(version)
);
}
else
{
std::cout<<"WARNING: unknown noncritical key '"
<<newkey<<version<<"' will be ignored\n";
}
}
}
else
{
throw std::runtime_error(
std::string("invalid block or corrupt buffer at byte: ")
+ std::to_string(it+3-buffer_.begin())
);
}
}
}
}
this->check_consistency();
}
// check consistency of blocks
void check_consistency()
{
for ( unsigned long int b = 0; b < this->rawblocks_.size()-1; b++ )
{
if ( this->rawblocks_[b].get_end() >= this->rawblocks_[b+1].get_begin() )
{
throw std::runtime_error(
std::string("inconsistent subsequent blocks:\n")
+ std::to_string(b) + std::string("-th block:\n") + this->rawblocks_[b].get_info()
+ std::string("\n")
+ std::to_string(b+1) + std::string("-th block:\n") + this->rawblocks_[b+1].get_info() );
}
}
}
// generate map of blocks using their uuid
void generate_block_map()
{
for ( imc::block blk: rawblocks_ )
{
mapblocks_.insert( std::pair<std::string,imc::block>(blk.get_uuid(),blk) );
}
}
// generate channel "environments"
void generate_channel_env()
{
// declare single channel environment
imc::channel_env chnenv;
chnenv.reset();
// collect affiliate blocks for every channel WITH CHANNEL and AFFILIATE
// BLOCK CORRESPONDENCE GOVERNED BY BLOCK ORDER IN BUFFER!!
for ( imc::block blk: rawblocks_ )
{
if ( blk.get_key().name_ == "CN" ) chnenv.CNuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CD" ) chnenv.CDuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CT" ) chnenv.CTuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "Cb" ) chnenv.Cbuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CP" ) chnenv.CPuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CR" ) chnenv.CRuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CS" ) chnenv.CSuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "NT" ) chnenv.NTuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "NO" ) chnenv.NOuuid_ = blk.get_uuid();
// check for currently associated channel
if ( !chnenv.CNuuid_.empty() )
{
// any component/channel is closed by any of {CS, CC, CG, CB}
if ( blk.get_key().name_ == "CS" || blk.get_key().name_ == "CC"
|| blk.get_key().name_ == "CG" || blk.get_key().name_ == "CB" )
{
chnenv.uuid_ = chnenv.CNuuid_;
channel_envs_.insert(
std::pair<std::string,imc::channel_env>(chnenv.CNuuid_,chnenv)
);
std::cout<<chnenv.get_info()<<"\n";
// reset channel uuid
chnenv.CNuuid_.clear();
}
}
// in contrast to component closed by CS block the blocks CB, CG, CC
// already belong to NEXT component
if ( blk.get_key().name_ == "CB" ) chnenv.CBuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CG" ) chnenv.CGuuid_ = blk.get_uuid();
else if ( blk.get_key().name_ == "CC" ) chnenv.CCuuid_ = blk.get_uuid();
}
}
// parse channel's raw data
template<typename datatype>
void convert_data_to_type(std::vector<unsigned char>& subbuffer,
std::vector<imc::datatype>& channel)
{
// check number of elements of type "datatype" in buffer
if ( subbuffer.size() != channel.size()*sizeof(datatype) )
{
throw std::runtime_error("size mismatch between subbuffer and datatype");
}
// extract every single number of type "datatype" from buffer
for ( unsigned long int i = 0; i < channel.size(); i++ )
{
// declare number of required type and point it to first byte in buffer
// representing the number
datatype df;
uint8_t* dfcast = reinterpret_cast<uint8_t*>(&df);
for ( unsigned long int j = 0; j < sizeof(datatype); j++ )
{
dfcast[j] = (int)subbuffer[i*sizeof(datatype)+j];
}
// save number in channel
channel[i] = df;
}
}
public:
// provide buffer size
unsigned long int buffer_size()
{
return buffer_.size();
}
// get blocks
std::vector<imc::block>& blocks()
{
return rawblocks_;
}
// get computational complexity
unsigned long int& computational_complexity()
{
return cplxcnt_;
}
// list a particular type of block
std::vector<imc::block> list_blocks(imc::key mykey)
{
std::vector<imc::block> myblocks;
for ( imc::block blk: this->rawblocks_ )
{
if ( blk.get_key() == mykey ) myblocks.push_back(blk);
}
return myblocks;
}
// list all groups (associated to blocks "CB")
std::vector<imc::block> list_groups()
{
return this->list_blocks(imc::get_key(true,"CB"));
}
// list all channels
std::vector<std::string> list_channels()
{
std::vector<std::string> channels;
for ( imc::block blk: this->rawblocks_ )
{
if ( blk.get_key() == imc::get_key(true,"CN") )
{
imc::parameter prm = blk.get_parameters()[6];
channels.push_back(blk.get_parameter(prm));
}
}
return channels;
}
};
}
#endif
//---------------------------------------------------------------------------//