IMCtermite/pyt/example.py

127 lines
4.4 KiB
Python

#-----------------------------------------------------------------------------#
import raw_eater
import raw_meat
import pyarrow as pa
import pyarrow.parquet as pq
rawlist = [
"smp/Rangerover_Evoque_F-RR534_2019-05-07/BrakePedalActiveQF_HS.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/BrakePressure_HS.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/EngineSpeed_HS.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/pressure_FL.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/pressure_RL.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/pressure_Vacuum.raw",
"smp/VehicleSpeed_HS.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/ABS_A_Port1.raw",
"./pyt/example.py",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/LateralAcceleration_HS.raw",
"smp/Rangerover_Evoque_F-RR534_2019-05-07/Temp_Disc_FR.raw"
]
print("")
#-----------------------------------------------------------------------------#
# convert every single listed file
for rf in rawlist :
print("converting " + str(rf) + "...\n" + 90*("-") + "\n")
# setup instance of "raw_eater" and trigger conversion
eatraw = raw_eater.raweater(rf.encode())
# eatraw = raw_meat.rawmerger(rf.encode())
# check validity of file format
if eatraw.validity() :
# show channel name and its unit
entity = eatraw.channel_name().decode(encoding='UTF-8',errors='ignore')
unit = eatraw.unit().decode(encoding='UTF-8',errors='ignore')
print("\nentity: " + str(entity))
print("unit: " + str(unit) + "\n")
# obtain extracted data
xt = eatraw.get_time()
yt = eatraw.get_channel()
# show excerpt of data
print("time (length: " + str(len(xt)) + ") \n"
+ str(xt[:10]) + "\n...\n" + str(xt[-10:]) + "\n")
yttrunc = [round(y,4) for y in yt]
print(str(entity) + " (length: " + str(len(yttrunc)) + ") \n"
+ str(yttrunc[:10]) + "\n...\n" + str(yttrunc[-10:]) + "\n")
outname = rf.split('/')[-1].replace('raw','csv')
print("write output to : " + outname)
eatraw.write_table((outname).encode(),ord(' '))
else :
print("\nerror: invalid/corrupt .raw file")
print("\n")
#-----------------------------------------------------------------------------#
print("convert and merge channels " + "\n" + 90*("-") + "\n")
# setup new instance to merge channels
eatmea = raw_meat.rawmerger(rawlist[0].encode())
# add every single channel/file in list
for rf in rawlist :
print("\nadding channel " + str(rf))
succ = eatmea.add_channel(rf.encode())
if succ :
print("\nrecent time series: length: " + str(len(eatmea.get_time_series())) + "\n")
else :
print("\nfailed to add channel\n")
# show summary of successfully merged channels
print("\nmerged channels:\n")
# write merged table to .csv output
eatmea.write_table_all('allchannels.csv'.encode(),ord(','))
# get number of successfully merged channels and their names (+units)
numch = eatmea.get_num_channels()
chnames = [chnm.decode(encoding='UTF-8',errors='ignore') for chnm in eatmea.get_channel_names()]
print("number of channels: " + str(numch))
print("channel names: " + str(chnames))
# obtain final time series
timse = eatmea.get_time_series()
print("\nfinal time series:\nlength:" + str(len(timse)) + "\n")
# get time unit and prepend column name
chnames.insert(0,"Time ["+str(eatmea.time_unit().decode(encoding='UTF-8',errors='ignore'))+"]")
# prepare list of pyarrow arrays
pyarrs = []
pyarrs.append(pa.array(timse))
for i in range(0,numch) :
print("\n" + str(i) + " " + str(chnames[i]))
dat = eatmea.get_channel_by_index(i)
print("length: " + str(len(dat)))
pyarrs.append(pa.array(dat))
print("")
# print("\npyarrow arrays\n" + str(pyarrs))
# create pyarrow table from data
pyarwtab = pa.Table.from_arrays(pyarrs,chnames)
print("\n" + 60*"-" + "\n" + str(pyarwtab) + "\n")
# write pyarrow table to .parquet file with compression
pq.write_table(pyarwtab,'allchannels.parquet',compression='BROTLI') # compression='BROTLI', 'SNAPPY')
# try to read and decode the .parquet file
df = pq.read_table('allchannels.parquet')
print(df.to_pandas())
# df.to_pandas().to_csv('allchannels.csv',index=False,encoding='utf-8',sep=",")
#-----------------------------------------------------------------------------#