IMCtermite/lib/rawmerge.hpp
Mario Fink 9bbbada6c9 - adjust example main.cpp for test of rawmerge.hpp
- add getter methods including get_num_channels in rawmerge.hpp
2020-08-11 16:07:48 +02:00

343 lines
12 KiB
C++

//---------------------------------------------------------------------------//
//
// @file rawmerge.hpp
// @author Mario Fink <mario.fink@record-evolution.de>
// @date Aug 2020
// @brief unify multiple channels and time series from .raw in single table
//
//---------------------------------------------------------------------------//
#ifndef RAW_MERGER
#define RAW_MERGER
#include "raweat.hpp"
#include <limits>
//---------------------------------------------------------------------------//
class raw_merger : public raw_eater
{
private:
// number of channels
int num_channels_;
// (merged) channel data related to SINGLE time series
std::vector<std::vector<double>> channels_;
std::vector<double> timeseries_;
// timestep of original timeseries
double dt_;
// temporal unit and channel meta data
std::string temp_unit_;
std::vector<std::string> channel_names_;
public:
// constructor
raw_merger(std::string rawfile): raw_eater(rawfile)
{
// add first initial channel
this->add_channel(rawfile);
}
raw_merger(): raw_eater()
{
}
// destructor
~raw_merger()
{
}
// get list of channel names
std::vector<std::string> get_channel_names()
{
return this->channel_names_;
}
// get unified timeseries
std::vector<double> get_time_series()
{
return this->timeseries_;
}
// get number of channels
unsigned long int get_num_channels()
{
return this->channels_.size();
}
// get array representation i-th channel
std::vector<double> get_channel(long unsigned int chidx)
{
return chidx >= 0 && chidx < this->channels_.size() ?
this->channels_[chidx] : std::vector<double>();
}
// add a single channel and its associated time series
bool add_channel(std::string rawfile, bool log = false)
{
// set raw file and perform conversion
this->set_file(rawfile,false);
// show channel name, unit, timestep, time unit, etc.
if ( log )
{
std::cout<<this->get_name()<<" ["<<this->get_unit()<<"]"<<"\n";
std::cout<<"Time ["<<this->get_temp_unit()<<"]"<<"\n";
for ( unsigned long int i = 0; i < 5; i++ ) std::cout<<this->get_time()[i]<<"\n";
for ( unsigned long int i = 0; i < 5; i++ ) std::cout<<this->get_data()[i]<<"\n";
std::cout<<"lenght of channel "<<this->get_time().size()<<"\n";
std::cout<<"\n";
}
// add first/initial time series (and channel data)
if ( this->get_valid() && timeseries_.size() == 0 && channels_.size() == 0 )
{
std::cout<<"adding initial channel "<<rawfile<<"\n\n";
// insert timeseries and its unit
this->timeseries_ = this->get_time();
this->temp_unit_ = this->get_temp_unit();
// get timestep size
this->dt_ = this->get_dt();
// insert channel data and its meta data
this->channels_.push_back(this->get_data());
this->channel_names_.push_back(this->get_name() + std::string(" [")
+ this->get_unit() + std::string("]"));
return true;
}
else
{
std::cout<<"adding next channel "<<rawfile<<"\n\n";
// check consistency of temporal unit
if ( this->get_temp_unit() == this->temp_unit_ )
{
// get new time series and data
std::vector<double> ts = this->get_time();
std::vector<double> td = this->get_data();
// compare start/end of timeseries (define tolerance)
double deltat = 10*this->dt_;
if ( ( this->timeseries_[0] - ts[0] < deltat )
&& ( this->timeseries_.back() - ts.back() < deltat ) )
{
// resulting new time series
std::vector<double> newts;
std::vector<std::vector<double>> newchannels;
// submerge channel with currently defined time series
bool succ = this->merge_channels(this->timeseries_,this->channels_, // current timeseries and exisiting channels
ts,td, // new timeseries and associated channel to add
newts,newchannels); // resulting new timeseries and new group of channels
// save result in members
this->timeseries_ = newts;
this->channels_ = newchannels;
// insert channel's meta data
this->channel_names_.push_back(this->get_name() + std::string(" [")
+ this->get_unit() + std::string("]"));
return succ;
}
else
{
// refuse to merge due to inconsistent start of timeseries
std::cerr<<"rawmerge: add_channel '"<<rawfile
<<"' : inconsistent start of time series, i.e. "
<<timeseries_[0]<<" vs. "<<ts[0]<<"\n";
return false;
}
}
else
{
// refuse to merge due to different temporal units
std::cerr<<"rawmerge: add_channel '"<<rawfile
<<"' : inconsistent time units\n";
return false;
}
}
}
// merge new channel and associated time series with exisiting channels and
// their already merged timeseries
bool merge_channels(std::vector<double>& current_timeseries, // current timeseries and associated...
std::vector<std::vector<double>>& current_channels, // ...exisiting (n) channels
std::vector<double>& new_timeseries, // new timeseries and associated...
std::vector<double>& new_channel, // ...new channel
std::vector<double>& result_timeseries, // resulting timeseries ...
std::vector<std::vector<double>>& result_channels, // ...and associated (n+1) channels
double placeholder = std::numeric_limits<double>::quiet_NaN(),
bool showlog = true)
{
if ( showlog )
{
std::cout<<"merge_channels:\n"
<<"current timeseries length: "<<std::setw(5)<<current_timeseries.size()
<<std::setw(10)<<std::setprecision(8)<<current_timeseries[0]
<<std::setw(10)<<std::setprecision(8)<<current_timeseries.back()<<"\n"
<<"number of exist. channels: "<<std::setw(5)<<current_channels.size()<<"\n"
<<"new timeseries length : "<<std::setw(5)<<new_timeseries.size()
<<std::setw(10)<<std::setprecision(8)<<new_timeseries[0]
<<std::setw(10)<<std::setprecision(8)<<new_timeseries.back()<<"\n"
<<"new channel length : "<<std::setw(5)<<new_channel.size()<<"\n\n";
}
// the prepared resulting timeseries and channels are supposed to be empty
assert ( result_timeseries.size() == 0 && result_channels.size() == 0 );
// make sure new channel and its timeseries are consistent
if ( new_timeseries.size() != new_channel.size() ) return false;
// check consistency of all exisiting channels and their timeseries as well
for ( std::vector<double> chan: current_channels )
{
if ( chan.size() != current_timeseries.size() ) return false;
}
// number of current exisiting channels
unsigned long int numchannels = current_channels.size();
// insert empty (n+1) channels
for ( unsigned long int i = 0; i < numchannels+1; i++ )
{
result_channels.push_back(std::vector<double>());
}
// current time step index for both (current and new) series
unsigned long int idxCur = 0, idxNew = 0;
// process all time steps in both time series
while ( idxCur < current_timeseries.size() || idxNew < new_timeseries.size() )
{
// if point in time of "current_timeseries" is BEFORE time of "new_timeseries"
// or "new_timeseries" is depleted
if ( current_timeseries[idxCur] + 1.0e-10 < new_timeseries[idxNew]
|| idxNew == new_timeseries.size() )
{
// keep current data as it is ...
for ( unsigned long int ch = 0; ch < numchannels; ch++ )
{
result_channels[ch].push_back(current_channels[ch][idxCur]);
}
// and insert placeholder in new channel
result_channels[numchannels].push_back(placeholder);
// add timestep to resulting timeseries and increment associated counter
result_timeseries.push_back(current_timeseries[idxCur]);
idxCur++;
}
// ...just reversed...
else if ( current_timeseries[idxCur] > new_timeseries[idxNew] + 1.0e-10
|| idxCur == current_timeseries.size() )
{
// insert placeholders for all exisiting channels...
for ( unsigned long int ch = 0; ch < numchannels; ch++ )
{
result_channels[ch].push_back(placeholder);
}
//...and add new channel as it is
result_channels[numchannels].push_back(new_channel[idxNew]);
// add timestep to resulting timeseries and increment associated counter
result_timeseries.push_back(new_timeseries[idxNew]);
idxNew++;
}
// ...points in time of both timeseries match...
else
{
// add ALL, i.e. both current and new data to result
for ( unsigned long int ch = 0; ch < numchannels; ch++ )
{
result_channels[ch].push_back(current_channels[ch][idxCur]);
}
result_channels[numchannels].push_back(new_channel[idxNew]);
// add timestep to resulting timeseries and increment both counters
result_timeseries.push_back(new_timeseries[idxNew]);
idxNew++;
idxCur++;
}
}
return true;
}
// print all data to file
void write_table(std::string filename, char delimiter = ',', int precision = 6, int width = 25)
{
// if at least one channel including its time series is present
if ( timeseries_.size() > 0 && channels_.size() > 0 )
{
// open file
std::ofstream fout(filename.c_str());
if ( fout.good() )
{
// define temporal column header
std::string colTime = std::string("Time [") + temp_unit_ + std::string("]");
// write header
if ( delimiter != ' ' )
{
fout<<colTime;
for ( std::string chnam: this->channel_names_ ) fout<<delimiter<<chnam;
}
else
{
fout<<std::setw(width)<<std::right<<colTime;
for ( std::string chnam: this->channel_names_ ) fout<<std::setw(width)<<std::right<<chnam;
}
fout<<"\n";
// write actual time and channel data
unsigned long int tidx = 0;
for ( double ti: this->timeseries_ )
{
if ( delimiter != ' ' )
{
fout<<std::fixed<<std::dec<<std::setprecision(precision)<<ti;
for ( std::vector<double> chn: this->channels_ )
{
fout<<delimiter<<std::dec<<std::setprecision(precision)<<chn[tidx];
}
}
else
{
fout<<std::fixed<<std::dec<<std::setprecision(precision)
<<std::setw(width)<<std::right<<ti;
for ( std::vector<double> chn: this->channels_ )
{
fout<<std::fixed<<std::dec<<std::setprecision(precision)
<<std::setw(width)<<std::right<<chn[tidx];
}
}
fout<<"\n";
// count number of samples
tidx++;
}
// close file
fout.close();
}
}
}
};
#endif
//---------------------------------------------------------------------------//