139 lines
4.5 KiB
Python
139 lines
4.5 KiB
Python
|
|
#-----------------------------------------------------------------------------#
|
|
|
|
import raw_eater
|
|
import raw_meat
|
|
import pyarrow as pa
|
|
import pyarrow.parquet as pq
|
|
import glob
|
|
from pathlib import Path
|
|
|
|
fileobj1 = Path("smp/Rangerover_Evoque_F-RR534_2019-05-07/").rglob("*.raw")
|
|
rawlist1 = [str(fl) for fl in fileobj1]
|
|
|
|
fileobj2 = Path("smp/Mercedes_E-Klasse-2019-08-08/").rglob("*.raw")
|
|
rawlist2 = [str(fl) for fl in fileobj2]
|
|
|
|
rawlist = rawlist1 #[rawlist1[0],rawlist1[4],rawlist2[0],rawlist2[6]]
|
|
for fil in rawlist2 :
|
|
rawlist.append(fil)
|
|
rawlist.append("smp/pressure_Vacuum.asc")
|
|
|
|
print("")
|
|
print(rawlist)
|
|
print()
|
|
|
|
#-----------------------------------------------------------------------------#
|
|
|
|
# alternatively create "empty" instance of "raw_eater" and set file names
|
|
eatraw = raw_eater.raweater()
|
|
# eatraw.set_file("../smp/pressure_Vacuum.raw".encode())
|
|
|
|
# convert every single listed file
|
|
for rf in rawlist :
|
|
|
|
print("converting " + str(rf) + "...\n" + 90*("-") + "\n")
|
|
|
|
# setup instance of "raw_eater" and trigger conversion
|
|
# eatraw = raw_eater.raweater(rf.encode())
|
|
# eatraw = raw_meat.rawmerger(rf.encode())
|
|
|
|
# use global instance of "raw_eater" to set file and perform decoding
|
|
eatraw.set_file(rf.encode())
|
|
try :
|
|
eatraw.do_conversion()
|
|
except RuntimeError as e :
|
|
print("conversion failed: " + str(e))
|
|
|
|
# check validity of file format
|
|
if eatraw.validity() :
|
|
|
|
# show channel name and its unit
|
|
entity = eatraw.channel_name().decode(encoding='UTF-8',errors='ignore')
|
|
unit = eatraw.unit().decode(encoding='UTF-8',errors='ignore')
|
|
print("\nentity: " + str(entity))
|
|
print("unit: " + str(unit) + "\n")
|
|
|
|
# obtain extracted data
|
|
xt = eatraw.get_time()
|
|
yt = eatraw.get_channel()
|
|
|
|
# show excerpt of data
|
|
print("time (length: " + str(len(xt)) + ") \n"
|
|
+ str(xt[:10]) + "\n...\n" + str(xt[-10:]) + "\n")
|
|
yttrunc = [round(y,4) for y in yt]
|
|
print(str(entity) + " (length: " + str(len(yttrunc)) + ") \n"
|
|
+ str(yttrunc[:10]) + "\n...\n" + str(yttrunc[-10:]) + "\n")
|
|
|
|
outname = rf.split('/')[-1].replace('raw','csv')
|
|
|
|
print("write output to : " + outname)
|
|
eatraw.write_table(("output/"+outname).encode(),ord(' '))
|
|
|
|
else :
|
|
|
|
print("\nerror: invalid/corrupt .raw file")
|
|
|
|
print("\n")
|
|
|
|
#-----------------------------------------------------------------------------#
|
|
|
|
print("convert and merge channels " + "\n" + 90*("-") + "\n")
|
|
|
|
# setup new instance to merge channels
|
|
eatmea = raw_meat.rawmerger(''.encode()) #rawlist[0].encode())
|
|
|
|
# add every single channel/file in list
|
|
for rf in rawlist :
|
|
print("\nadding channel " + str(rf))
|
|
try :
|
|
succ = eatmea.add_channel(rf.encode())
|
|
print("\nrecent time series: length: " + str(len(eatmea.get_time_series())) + "\n")
|
|
except RuntimeError as e :
|
|
print("failed to add channel: " + str(e))
|
|
|
|
# show summary of successfully merged channels
|
|
print("\nmerged channels:\n")
|
|
|
|
# write merged table to .csv output
|
|
eatmea.write_table_all('output/allchannels.csv'.encode(),ord(','))
|
|
|
|
# get number of successfully merged channels and their names (+units)
|
|
numch = eatmea.get_num_channels()
|
|
chnames = [chnm.decode(encoding='UTF-8',errors='ignore') for chnm in eatmea.get_channel_names()]
|
|
print("number of channels: " + str(numch))
|
|
print("channel names: " + str(chnames))
|
|
|
|
# obtain final time series
|
|
timse = eatmea.get_time_series()
|
|
print("\nfinal time series:\nlength:" + str(len(timse)) + "\n")
|
|
|
|
# get time unit and prepend column name
|
|
chnames.insert(0,"Time ["+str(eatmea.time_unit().decode(encoding='UTF-8',errors='ignore'))+"]")
|
|
|
|
# prepare list of pyarrow arrays
|
|
pyarrs = []
|
|
pyarrs.append(pa.array(timse))
|
|
|
|
for i in range(0,numch) :
|
|
print("\n" + str(i) + " " + str(chnames[i]))
|
|
dat = eatmea.get_channel_by_index(i)
|
|
print("length: " + str(len(dat)))
|
|
pyarrs.append(pa.array(dat))
|
|
print("")
|
|
# print("\npyarrow arrays\n" + str(pyarrs))
|
|
|
|
# create pyarrow table from data
|
|
pyarwtab = pa.Table.from_arrays(pyarrs,chnames)
|
|
print("\n" + 60*"-" + "\n" + str(pyarwtab) + "\n")
|
|
|
|
# write pyarrow table to .parquet file with compression
|
|
pq.write_table(pyarwtab,'output/allchannels.parquet',compression='BROTLI') # compression='BROTLI', 'SNAPPY')
|
|
|
|
# try to read and decode the .parquet file
|
|
df = pq.read_table('output/allchannels.parquet')
|
|
print(df.to_pandas())
|
|
# df.to_pandas().to_csv('allchannels.csv',index=False,encoding='utf-8',sep=",")
|
|
|
|
#-----------------------------------------------------------------------------#
|