import tdm_ripper import numpy as np import matplotlib.pyplot as plt tdmpath = b"samples/SineData.tdm" tdxpath = b"samples/SineData.tdx" # create instance of ripper class RP = tdm_ripper.pytdmripper(tdmpath) # provide overview of available channels RP.show_channels() print(RP.num_channels()) print(RP.num_groups()) # print particular channel to file RP.print_channel(1,b"SineData_extract.dat") # extract channel and return it to numpy array channels = RP.get_channel(1) Nlen = len(channels) channels = np.append(channels,RP.get_channel(2)) channels = np.append(channels,RP.get_channel(3)) channels = np.append(channels,RP.get_channel(4)) channels = np.append(channels,RP.get_channel(5)) channels = np.append(channels,RP.get_channel(6)) channels = np.append(channels,RP.get_channel(7)) channels = np.append(channels,RP.get_channel(8)) print(channels.shape) print("\n\n") print(channels[0:40]) x = np.linspace(0,Nlen,Nlen) plt.plot(x,channels[0:1000]) plt.plot(x,channels[1000:2000]) plt.plot(x,channels[2000:3000]) plt.plot(x,channels[3000:4000]) plt.plot(x,channels[4000:5000]) plt.plot(x,channels[5000:6000]) plt.plot(x,channels[6000:7000]) plt.plot(x,channels[7000:8000]) plt.grid() plt.show()