import tdm_ripper import numpy as np import matplotlib.pyplot as plt tdmpath = b"samples/SineData.tdm" tdxpath = b"samples/SineData.tdx" # create instance of ripper class RP = tdm_ripper.pytdmripper(tdmpath) RP = tdm_ripper.pytdmripper(b"/Users/mariofink/git/Conti_HBS/data_science/python/features/tdm_tmp_slow/75_1/Messung.tdm") # provide overview of available channels RP.show_channels() print(RP.num_channels()) print(RP.num_groups()) for i in range(0,RP.num_groups()): print(str(i+1).rjust(10)+str(RP.no_channels(i)).rjust(10)) # print particular channel to file # RP.print_channel(1,b"SineData_extract.dat") # extract channel and return it to numpy array # channels = RP.get_channel(1) # Nlen = len(channels) # channels = np.append(channels,RP.get_channel(2)) # channels = np.append(channels,RP.get_channel(3)) # channels = np.append(channels,RP.get_channel(4)) # channels = np.append(channels,RP.get_channel(5)) # channels = np.append(channels,RP.get_channel(6)) # channels = np.append(channels,RP.get_channel(7)) # channels = np.append(channels,RP.get_channel(8)) # print(channels.shape) # print("\n\n") # print(channels[0:40]) # # x = np.linspace(0,Nlen,Nlen) # plt.plot(x,channels[0:Nlen]) # plt.plot(x,channels[Nlen:2*Nlen]) # plt.plot(x,channels[2*Nlen:3*Nlen]) # # plt.grid() # plt.show()