TDMtermite/lib/tdm_reaper.hpp
2021-01-19 17:37:10 +01:00

375 lines
10 KiB
C++

// ------------------------------------------------------------------------- //
#ifndef TDM_REAPER
#define TDM_REAPER
#include <iostream>
#include <fstream>
#include <iterator>
#include <vector>
#include <iomanip>
#include <stdlib.h>
#include <assert.h>
#include <map>
#include <numeric>
#include <algorithm>
#include <chrono>
#include <sstream>
#include <filesystem>
#include "pugixml.hpp"
#include "tdm_datamodel.hpp"
// -------------------------------------------------------------------------- //
class tdm_ripper
{
// .tdm and .tdx paths/filenames
std::string tdmfile_;
std::string tdxfile_;
// set of .csv files
std::vector<std::string> csvfile_;
// endianness (true = little, false = big)
bool endianness_, machine_endianness_;
// tdm root
tdm_root tdmroot_;
// number/names/ids of channels, channelgroups and channels's assignment to groups
int num_channels_, num_groups_;
std::vector<std::string> channel_id_, inc_id_, units_, channel_name_;
std::vector<std::string> group_id_, group_name_;
std::vector<std::pair<std::string,std::string>> group_timestamp_;
std::vector<int> num_channels_group_;
std::vector<int> channels_group_;
std::vector<int> channel_ext_;
// neglect empty groups
bool neglect_empty_groups_;
int num_empty_groups_;
// minimum/maximum value in particular channel (is provided in .tdm file as float)
std::vector<std::pair<double,double>> minmax_;
// use xpointers and ids to assign channels to byteoffsets
std::map<std::string,std::string> xml_local_columns_, xml_values_, xml_double_sequence_;
// byteoffset, length and datatype of channels
std::vector<int> byteoffset_;
std::vector<int> length_;
std::vector<std::string> type_;
std::vector<std::string> external_id_;
// NI datatypes ( )
std::map<std::string, int> datatypes_;
// xml parser
pugi::xml_document xml_doc_;
pugi::xml_parse_result xml_result_;
// .tdm-file eventually contains some meta information (about measurement)
std::map<std::string,std::string> root_info_;
std::map<std::string,std::string> meta_info_;
// binary data container
std::vector<unsigned char> tdxbuf_;
public:
tdm_ripper(std::string tdmfile, std::string tdxfile = std::string(""), bool showlog = false);
void parse_structure();
void list_channels(std::ostream& gout = std::cout, int width = 15, int maxshow = 50);
void list_groups(std::ostream& gout = std::cout, int width = 15, int maxshow = 50);
void show_structure();
// count number of occurences of substring in string
int count_occ_string(std::string s, std::string sub)
{
int num_occs = 0;
std::string::size_type pos = 0;
while ( ( pos = s.find(sub,pos) ) != std::string::npos )
{
num_occs++;
pos += sub.length();
}
return num_occs;
}
// obtain substring of 'entirestr' in between starting and stopping delimiter
std::string get_str_between(std::string entirestr, std::string startlim, std::string stoplim)
{
std::size_t apos = entirestr.find(startlim);
std::size_t bpos = entirestr.find_last_of(stoplim);
assert( apos != std::string::npos && bpos != std::string::npos );
return entirestr.substr(apos+startlim.length(),bpos-(apos+startlim.length()));
}
void print_hash_local(const char* filename, int width = 20)
{
std::ofstream fout(filename);
std::map<std::string,std::string>::iterator it;
int count = 0;
for ( it = xml_local_columns_.begin(); it != xml_local_columns_.end(); it++ )
{
count++;
fout<<std::setw(width)<<count;
fout<<std::setw(width)<<it->first;
fout<<std::setw(width)<<it->second;
fout<<"\n";
}
fout.close();
}
void print_hash_values(const char* filename, int width = 20)
{
std::ofstream fout(filename);
std::map<std::string,std::string>::iterator it;
int count = 0;
for ( it = xml_values_.begin(); it != xml_values_.end(); it++ )
{
count++;
fout<<std::setw(width)<<count;
fout<<std::setw(width)<<it->first;
fout<<std::setw(width)<<it->second;
fout<<"\n";
}
fout.close();
}
void print_hash_double(const char* filename, int width = 20)
{
std::ofstream fout(filename);
std::map<std::string,std::string>::iterator it;
int count = 0;
for ( it = xml_double_sequence_.begin(); it != xml_double_sequence_.end(); it++ )
{
count++;
fout<<std::setw(width)<<count;
fout<<std::setw(width)<<it->first;
fout<<std::setw(width)<<it->second;
fout<<"\n";
}
fout.close();
}
void print_extid(const char* filename, int width = 20)
{
std::ofstream fout(filename);
int count = 0;
for ( auto extid: channel_ext_ )
{
count++;
fout<<std::setw(width)<<count;
fout<<std::setw(width)<<extid;
fout<<"\n";
}
fout.close();
}
// provide number of channels and group
const int& num_channels()
{
return num_channels_;
}
const int& num_groups()
{
return num_groups_;
}
// get number of channels in specific group
const int& no_channels(int groupid)
{
assert( groupid >= 0 && groupid < num_groups_ );
return num_channels_group_[groupid];
}
const std::string& channel_name(int channelid)
{
assert( channelid >= 0 && channelid < num_channels_ );
return channel_name_[channelid];
}
// obtain overall channel id from combined group and group-specific channel id
int obtain_channel_id(int groupid, int channelid)
{
assert( groupid >= 0 && groupid < num_groups_ );
assert( channelid >= 0 && channelid < num_channels_group_[groupid] );
// find cummulative number of channels
int numsum = 0;
for ( int i = 0; i < groupid; i++ )
{
numsum += num_channels_group_[i];
}
assert( (numsum + channelid) >= 0 );
assert( (numsum + channelid) <= num_channels_ );
return numsum+channelid;
}
const std::string& channel_name(int groupid, int channelid)
{
return channel_name_[obtain_channel_id(groupid,channelid)];
}
const std::string& group_name(int groupid)
{
assert( groupid >= 0 && groupid < num_groups_ );
return group_name_[groupid];
}
const std::string& channel_unit(int groupid, int channelid)
{
return units_[obtain_channel_id(groupid,channelid)];
}
int channel_exists(int groupid, std::string channel_name)
{
assert( groupid >= 0 && groupid < num_groups_ );
int channelid = -1;
for ( int i = 0; i < num_channels_group_[groupid]; i++)
{
if ( comparestrings(channel_name_[obtain_channel_id(groupid,i)],channel_name) )
{
channelid = i;
}
}
return channelid;
}
bool comparestrings(std::string s1, std::string s2, bool case_sensitive = false)
{
if ( case_sensitive )
{
return ( s1.compare(s2) == 0 );
}
else
{
std::transform( s1.begin(), s1.end(), s1.begin(), ::tolower);
std::transform( s2.begin(), s2.end(), s2.begin(), ::tolower);
return ( s1.compare(s2) == 0 );
}
}
// get time-stamp of channel-group in .tdm file given in unix format
static std::string unix_timestamp(std::string unixts)
{
// average year of Gregorian calender
const double avgdaysofyear = 365.0 + 1./4 - 1./100 + 1./400
- 8./24561; // gauge timestamp according to DIADEM result
// convert string to long int = number of seconds since 0000/01/01 00:00
long int ts = atol(unixts.c_str());
assert( ts >= 0 );
// use STL to convert timestamp (epoch usually starts on 01.01.1970)
std::time_t tstime = ts - 1970*avgdaysofyear*86400;
// get rid of linebreak character and return the result
return strtok(std::ctime(&tstime),"\n");
}
std::string time_stamp(int groupid, bool startstop = true)
{
assert( groupid >= 0 && groupid < num_groups_ );
return startstop ? unix_timestamp(group_timestamp_[groupid].first)
: unix_timestamp(group_timestamp_[groupid].second);
}
void list_datatypes();
// convert array of chars to single integer or floating point double
int convert_int(std::vector<unsigned char> bych);
double convert_double(std::vector<unsigned char> bych);
// disassemble single integer or double into array of chars
std::vector<unsigned char> convert_int(int number);
std::vector<unsigned char> convert_double(double number);
// convert entire channel, i.e. expert of .tdx binary file
// std::vector<double> convert_channel(int byteoffset, int length, int typesize);
std::vector<double> convert_channel(int channelid);
// obtain channel from overall channel id...
std::vector<double> get_channel(int channelid);
// ...or from group id and group-specific channel id
std::vector<double> channel(int groupid, int channelid)
{
return get_channel(obtain_channel_id(groupid,channelid));
}
int channel_length(int groupid, int channelid)
{
return length_[channel_ext_[obtain_channel_id(groupid,channelid)]];
}
double get_min(int groupid, int channelid)
{
return minmax_[obtain_channel_id(groupid,channelid)].first;
}
double get_max(int groupid, int channelid)
{
return minmax_[obtain_channel_id(groupid,channelid)].second;
}
void print_channel(int channelid, const char* filename, int width = 15);
// obtain any meta information about .tdm-file if available
std::string get_meta(std::string attribute_name)
{
// check if key "attribute_name" actually exits
std::map<std::string,std::string>::iterator positer = meta_info_.find(attribute_name);
bool ispresent = ( positer == meta_info_.end() ) ? false : true;
return ispresent ? meta_info_[attribute_name] : "key does not exist";
}
// prepare meta information file including all available meta-data
void print_meta(const char* filename, std::string sep = ",")
{
// open file
std::ofstream fout(filename);
for ( const auto& it : root_info_ )
{
fout<<it.first<<sep<<it.second<<"\n";
}
fout<<sep<<"\n";
for ( const auto& it : meta_info_ )
{
fout<<it.first<<sep<<it.second<<"\n";
}
// close down file
fout.close();
}
// TODO add elements/methods to build .tdm and write .tdx files for your own data
// by constructing xml document tree and write data to binary .tdx
// void set_channels(std::vector<std::string> channels);
// void set_groups(std::vector<std::string> groups);
// void set_assigment(std::vector<int> assignment);
// void set_channel(int i, std::vector<double> data);
};
#endif
// -------------------------------------------------------------------------- //